Agri-tech developments in the beef and sheep sectors

Professor Karl Behrendt

Food, Land and Agribusiness Management Department

AFCP/HAU Conference Animal Science – Addressing Current Challenges 14th July 2023

2020 Global PLF technology adoption: Expert Opinion Survey

Global adoption of 53 technologies...

Data/Decision Making & Marketing technologies	Mean	S.E.
DSTs	16	3.2
Mobile_Apps	12	2.1
Ind_Dbase	23	3.6
Livestock_Trace	37	5.2
Distribu_Ledger	20	4.1
Carcass_feedback	24	4.1
Market_Info	40	4.7
Accounting_sw	30	3.9
Farm_records_sw	25	3.3
Auto_weather	10	2.3
Manual_weather	16	3.2
Online_Climate	43	4.9
Auto_barn	6	1.7
Manual_barn	15	3.5
Video_surv	13	2.7

Global Institute for

Agri-Tech Economics

PLF Technology	Mean	S.E.
Accoloromotors	2	0.0
Accelerometers	3	0.9
Rumen_bolus	6	1.7
WoW	9	2.2
Preg_scan	31	3.8
A_Insem	25	3.7
Enbryo_trans	6	1.6
Sexed_semen	6	1.9
Oestrus_sync	17	3.2
Genetic_Dbase	20	3.3
FCR	7	1.9
Handlers	40	4.6
Weigh_scales	39	4.2
RFID	40	5.4
Tagging	51	5.1
GPS_loc	3	1.2
BCS	3	1.1
BCS_man	20	2.9
Dose_control	4	1.7

Precision feeding/housing technologies	Mean	S.E.
Mech_Feed	16	2.9
NDVI	5	1.5
DM_man	8	2.0
Soil_moist	7	1.4
Auto_irrg	7	1.4
GPS_fert	10	2.4
VRT_fert	5	1.0
Soiltest_low	15	2.9
Soiltest_high	6	1.9
Precision_DM_graze	4	1.0
Rot_graze_low	20	2.5
Auto_feed	6	1.3
Lick_feed	14	2.6
Virt_fence	5	2.1
Bunk_scan	1	0.3
Auto_straw	1	0.3
Auto_clean	3	1.4
Auto_water	2	0.7
Feed_add	12	2.8
	11	3.2

Behrendt, K. & Anderton, L. (2021) Global adoption of precision livestock farming technologies. Digitalisation in Livestock Farming – agri benchmark Beef

and Sheep Seminar Series. 13 October 2021

Drivers of PLF technology adoption...

Driver of PLF Technology Adoption *	Mean	S.E.
Upfront cost of investment	4.1	0.11
Profit from adoption	3.8	0.13
Environmental costs and benefits	2.5	0.12
Scale of farming	3.8	0.13
Trialability of technology	3.2	0.11
Awareness of technology	3.5	0.13
Risk of adopting technology	3.2	0.14
Ease and convenience of technology integration	3.6	0.13
Technology's match with personal goals	3.7	0.14
Short term constraints (e.g. family needs, drought, low prices)	3.5	0.15
The social or cultural appropriateness of technology	3.0	0.16
Farmer's level of education, skills, or knowledge	3.9	0.13

1 = Not influential at all; 2 = Slightly influential; 3 = Moderately influential; 4 = Very influential; 5 = Extremely influential

* Kuehne et al. (2017) Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. *Agricultural Systems*, 156, pp115-125.

Technologies transforming beef and sheep sector

- Identification (biometrics & recognition image processing) & traceability (RFID/EiD)
- Welfare and production monitoring (telemetrics, biometrics, physiological state/biosensing, image analysis)
- Genomics gene editing (disease resistance, NFE etc)
- Phenotypics G x E x M interactions
- Robotics/sensors milking, herding, spatial monitoring
- Metabolic modifiers anabolics, growth hormones, feed additives (e.g. methane inhibitors 3-NOP, Bromoform)
- ICT (LoRa Technology & IOT)

Transforming livestock systems with precision technologies...

Transforming livestock systems with precision technologies...

C-Lock SmartScale

C-Lock GreenFeed System

Transforming traditional supply chains...

MEQ Live provides estimates of yield

and meat eating quality on live animals

MEQ Probe has been developed to objectively measure eating quality

Nanoscale Biophotonics >> spectral signatures >> Intramuscular Fat, Shear Force, and pH of the meat.

Source: ABC, permission MEQ Probe (31/10/2018) https://www.meqprobe.com/

Transforming traditional supply chains...

Global Institute for

-Tech Economics

DEXA whole of carcase scanning systems

JBS Bordertown and Scott Automation & Robotics

Challenges to technology adoption...

- Decision makers informing design & development
- Inter operability & system integration Sensors and data acquisition
- Business models for data management & 'trust in sharing'
- Information sources for big data analysis
- ICT challenges & connectivity
- Support/servicing networks for new technologies
- Social perspectives on high-tech agriculture
- ECONOMICS of adopting a technology

Data-driven blueprint for UK beef farmers to move towards Net Zero

Capper, J., Ford, L., Behrendt, K., Harris, E. (2023) Helping farmers navigate the green economy: A data-driven blueprint for net zero beef. Animal – science proceedings, 14(2): 388-389. https://doi.org/10.1016/j.anscip.2023.01.515

- Records from 856 head cleaned to 777 head
- DOB age at slaughter, sex, breed, sire, rearer etc
- FCE/RFI, multiple weight measures, carcass specification, kill-out rate
- Calibrated growth & intake models to predict life-time production and economics – look to optimise eGHG x GM trade-offs

eGHG Emission Intensity & Economic Trade offs win:win

Harper Adams University

R-square: 0.3193

GM = -1.457 x eGHG EI + 484.6

Economics

Average = £210 per head

23% increase

Multi-cycle optimality...

Cycle	Maximum Gross Margin (£/hd – finishing in perpearcy)		Weight at slaughter (kg Lwt/hd)		Age at slaughter (Days)	
	Mean	tDev	Mean	StDev	Mean	StDev
'Actual'	5094	3662	612	44	500	34
'Single'	7033	3442	531	53	438	44
'Multiple'	7372	3620	511	32	422	50
'Multiple'	7372	3620 5% profit	511 gain	32	422	50

Emissions & Economics

Average = 57 kg CH₄ emitted / hd (**44.44 tonnes CH₄ emitted**)

Emission Intensity

Average = 33 kg CH₄ emitted / hd (25.94 tonnes CH₄ emitted)

Thank you and further information:

MariTechEcon

Prof. Karl Behrendt

Elizabeth Creak Chair in Agri-Tech Economic Modelling Land, Farm & Agribusiness Management Department Harper Adams University

Email: kbehrendt@harper-adams.ac.uk

harper.ac.uk/researchgiate

https://www.agritechecon.co.uk/

Job Opportunity at Harper Adams University: FUNDED MRes - Agricultural Economics

jobs.harper-adams.ac.uk • 4 min read

BREED FOR CH.4NGE

BREEDING LOW METHANE SHEEP

