

AFCP Forum

Paper 4: The role of charities in early career development

Nathan Morris, NIAB TAG

Plant Science into Practice

About myself

- From a non-farming background
- Interested in agriculture from a young age
- Attended college to complete vocational training (BTEC Diplomas)
- Completed Degree in Agriculture and became very interested in research
- Went on to complete PhD in Plant Sciences at Reading University

Strip tillage unit purchased from Illinois, USA with support from The Douglas Bomford Trust

U.S. study tour to examine strip tillage funded by The RJ Harrison Trust – May 2005

Current Role

- Currently the 'Farming Systems and Soils Specialist' at NIAB
- The role involves the technical management and delivery of research projects within applied research programmes and to lead and develop expertise in the area of applied soil science.

Plant Science into Practice

Strip tillage - European experiences

RJ Harrison Trust funded study tour to Germany for a two day strip tillage workshop in May 2011

New Farming Systems (NFS) research project

- The NFS series of experiments started in 2007 and are located at Morley (Norfolk) on a sandy loam soil.
 - NFS delivers several ongoing (large scale fully replicated) rotation projects focusing on improving resilience and output.
- Main research themes:
- <u>Cover crops</u>: The evaluation of the potential fertility building benefits of cover crops and/or legume bi-crops within rotation systems.
- 2. <u>Cultivations</u>: Examining cultivation suitability within defined approaches.
- 3. <u>Amendments</u>: Determining the value of amendments to soils and rotation systems.
- Two more recent studies started in 2011:
 - MORE (Manure and Organic Replacements Experiment).
 - LESS (Low Energy Sustainable Systems).

Chadacre

Integration of major UK field experiments Research will assess differences in soil conditions for plant growth at 3 long term systems sites Objectives include:

Mid Pilmore, JHI

NIABTAC

Hutton

- quantification of differences in soil carbon concentration / SOM
- measurement of the impact of soil management on crop performance
- quantifying farm gate impacts of shifts in management practice
- delivery of practical tools and definition of favourable soil physical conditions for cereal production.

Saxmundham Experimental Site

- Long-term experimental site started in 1899.
- Experiment looking at the effects of manure and fertiliser amendments on crop performance.
- Recently the site was acquired on a long-term lease by TMAF and has been brought back into cropping following a period when it was left fallow.
- This important long-term experiment provides a platform to develop research activities supporting research and educational groups.

Support from charities - Summary

Supported project	Charity
PhD	The Morley Agricultural Foundation and The Chadacre Trust
Farm equipment	The Douglas Bomford Trust
U.S. Study Tour	The RJ Harrison Trust
German Study Tour	The RJ Harrison Trust
Sustainability, Performance and Yield (SPY) – on brash soils	The John Oldacre Foundation
New Farming Systems (NFS) project	The Morley Agricultural Foundation and The JC Mann Trust
Sustainable Trial in Arable Rotations (STAR) project	The Felix Thornley Cobbald Trust and The Chadacre Trust
Saxmundham Experimental site	The Morley Agricultural Foundation

Support from charities has developed my career

- My current role within NIAB as the 'Farming Systems and Soils Specialist' has allowed me to develop expertise in:
 - Farming Systems
 - Crop performance
 - Soil structure
 - Soil function and fertility
- The farming systems programme funded through charitable support has become increasingly widely recognised, both nationally and internationally, as a leading, long term, independent research programme exploring ways to improve the sustainability, resilience and output of arable farming systems.

The challenges for the industry

- Global population is expected to increase from 7 billion today to over 9 billion by 2050.
 - Hunger remains widespread with around 925 million people experiencing hunger.
 - Many current systems of food production are unsustainable due to:
 - Soil loss from erosion;
 - Loss of soil fertility, salination and other forms of degradation;
 - Heavy reliance on fossil fuel-derived energy for synthetic fertilisers, agrochemicals and pesticides.

Source: Foresight. The Future of Food and Farming (2011) Executive Summary.

How support from charities can better support the industry

- Support for funding long-term system and soil management research is difficult to secure funding.
 - Economic returns are sometimes difficult to quantify.
 - Outcomes from research can sometimes be unexpected difficult to set hypothesis at the out set.
- Wider collaboration between charities could help secure funding for much needed research in areas of agriculture e.g. soil science and help to develop the next generation of skilled workforce ready to meet the challenges ahead.

How support from charities can better support the industry

- Charities have a beneficial role in supporting the industry through:
 - Encouraging and supporting new entrants into the industry through training and education e.g. formal training and studentships.
 - Support and promote the ongoing workforce of the agricultural industry. Identify skills and knowledge gaps and support accredited training to assist businesses develop their workforces for **21**st Century farming
- AFCP may be able to provide a matrix of key areas for support to assist with targeting research

AHDB

CEREALS & OILSEEDS

AHDB Cereals & Oilseeds Research and Knowledge Exchange Priority Matrix 2015–2020

Aims	Priority Targets for Knowledge Exchange	Crop Management	Natural Resources and the Environment	End Use Qu	ality	
1	Identify, analyse and manage constraints on production	Black-grass control Effective weed management in the rotation Resistance to pesticides Cost-effective integrated crop management options	Avoiding and alleviating soil compaction Better understanding of soil biology Improving soil health			
Inform On-farm Decisions					nitoring tools rediction	
	A matrix of possible research areas of interest to charities could assist with targeting proposals to appropriate charities.					
	Picking a	Picking a high profile project behind which charities could unite forces as a one-off initiative, or perhaps an on-going sponsored studentship that comes up every three years				
Improve Business	forces as a					
Opportunitie	studentsnip that comes up every three years.					
					I and P to	
Prepare the Industry	Develop early warning systems for pest and disease risks	 Great pest, weed and disease spread Monitoring for new and emerging threats to crop production 	 Improved linkage of weather forecasts to decision support tools 	 Rapid warning/detection for acrylamide, ergot a mycotoxins 	on systems and fusarium	
Y	Assessment of costs and benefits of novel technologies	 Improved targeting of crop inputs Optimum rates and timings of crop nutrients 	 New technologies for precision application of crop inputs 	 New technologies for plant breeding and rapid phenotyping t develop more resilient varieties 		

How support from charities can better support the industry

- What percentage of the workforce in agriculture have no qualifized a contract of the molecule of the workforce in agriculture have no qualified a contract of the molecule of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in agriculture have no qualified as a contract of the workforce in a contract of the wor
- 18% which kethere is no for training
- What because the batter to are in gradic penployers in our sector is?
- a) No money available for training
- b) No training available in relevant subject area
- c) All staff are proficient / no need for training
- d) Too busy for training

New infrastructure :

Course Finder

Level	Sector	Role		
Any 🗸	Any 🗸	Any		
Dates and locations	Course Title			
To be scheduled	Black-grass management - theory into practice			
To be scheduled	Disease management in oilseed rape			
Winter/spring 2016, various locations	Optimising nutrients for combinable crops			
Winter 2016, various locations	Rotations and soil fertility in combinable crops			
Autumn/winter 2015-16, Cambridge	Practical management of soil compaction			
To be scheduled	Spray applications			
Spring 2016, Cambridge	Principles of weed and pest management in combinable crops			
Winter 2015-16, various locations	Disease management in wheat			
Autumn/winter 2015-16, various locations	Solls - Foundation			
Autumn/winter 2015-16, Cambridge	Principles of water management and crop irrigation			
To be scheduled	Principles of soil and water management (non-irrig	ated crops)		
Autumn/winter 2015-16, various locations	Principles of nutrient management in field vegetables			

Available courses

Wheat disease control

Devised by NAB TAE's BIT Care

Learn about fungicide management and gain access to the unique variety fungicide planning tool which allows users to see how individual varieties respond to fungicide inputs. Also included is a wheat disease database that covers identification, biology and control. This is an ideal follow-up to the principles learnt in our Wheat disease identification e-learning course.

Click Here to Subscribe Click Here to Login

and Mary

The science behind remote sensing

Devised by NVR TAD's: BR Clark with input ham Enc Oter and John Customs

This course explains the science behind some of the remote sensing techniques that are used in modern farming. It explains satellite, air-bonns and tractor-mounted sensors, what they actually measure and how to interpret the images. Understanding the science behind these technologies will allow you to use them more effectively on farm to help manage your inputs.

Duration : 2 hours - self paced

Cick Here to Subscribe Cick Here to Lago

The arable year Deviation by NAME TABLE Roberts on and Lie Roberts on

This entry level course gives an overview of anable agriculture, showing the process of growing six common particultural states over the strengt of a very a well as controlled address large such as well

Resilient rotations...spring 2016

Resilient Rotations Model ARTIS Model GM Heavy GM Light Results -Land Type Save/Send current status Heavy • Number of Years 4 Year 2 Year 3 **Cropping Year** Year 1 Year 4 ---**Crop Species** * Oilseed Rape Barley Wheat Wheat Milling/Malting V ----**Drilling Date** Early Mid Early Mid ~ ~ Preceding Cover Crop V ~ Cropping Winter Wheat Milling Winter Oilseed Rape Winter Barley Winter Wheat **Users Gross Margins** 1 Position in Rotation 1st 1st 1st **Oilseed Rape Frequency** 25% ---Deep Non-Inversion Shallow Non-Inversion * **Primary Cultivation System** Direct Drill Plough

Yield loss analysis

Yield Loss Analysis								
	1 st WW	2 nd WW	3 rd WW	W OSR	ww	WOSR		
Cultivation System	0.00	0.00	0.00	-0.42	0.00	-0.42		
Drilling Date	0.00	-0.75	-2.10	0.00	0.00	0.00		
Rotation Position	0.00	-2.14	-3.61	0.00	0.00	0.00		
Oilseed Rape Frequency	0.00	0.00	0.00	-0.12	0.00	-0.12		
Preceding Break Crop	0.00	0.00	0.00	0.00	0.00	0.00		

Impact of mid and late drilling dates

Impact of shallow non inversion tillage on OSR yield compared to ploughing

2nd and 3rd wheat yield reduction

Yield decline in OSR with shorter rotation

Plant Science into Practice

Thank you